[HICC.VN]

một trong những những dạng bài toán phổ biến nhất và cũng không kém phần thách thức với những học sinh ở phần hình học phổ thường là những bài toán liên quan đến trọng tâm. Với dạng hình thường gặp nhất là trọng tâm hình tam giác. 

Chính vì lý do này, hôm nay thienmaonline.vn xin gửi đến chúng ta một nội dung bài viết tổng quát nhất về định nghĩa trọng tâm là gì, trọng tâm hình tam giác, cũng như cách tính trọng tâm, những công thức liên quan đến trọng tâm hình tam giác.

chúng ta đang xem: Trọng tâm tam giác là gì

1.TRỌNG TÂM LÀ GÌ?

Theo sách giáo khoa hiện hành, từ năm học lớp 7 học sinh đã được tiếp xúc với trọng tâm. Định nghĩa trọng tâm được sách giáo khoa ghi lại như sau: “Trong 1 tam giác có 3 đường trung tuyến. 3 đường trung tuyến này cùng đi qua một điểm, điểm này được gọi là trọng tâm của tam giác”.

Lấy ví dụ tam giác ABC với 3 đường trung tuyến lần lượt là AM, BN, CP. 3 đường trung tuyến của tam giác ABC này lần lượt đi qua giao điểm G. G chính là trọng tâm của tam giác ABC.

*

2. CÁCH XÁC ĐỊNH TRỌNG TÂM TAM GIÁC

Trọng tâm hình tam giác có một tính chất quan trọng cần nhớ như sau: “Khoảng cách từ trọng tâm tam giác đến 3 đỉnh của hình tam giác bằng ⅔ độ dài đường trung tuyến tương ứng với đỉnh đó”.

Xem thêm: Khu Ẩm Thực Royal City – KháM Phá Khu Phố ẨM ThựC TạI Royal City

Từ tính chất này, ta có 2 cách nhằm xác định trọng tâm của một tam giác. Lấy ví dụ tam giác ABC với 3 đường trung tuyến AM, BN, CP và G là trọng tâm tam giác ABC. 

Cách 1: 

Xác định trung điểm M của cạnh BC sao cho M chia BC thành 2 đoạn bằng nhau MC = MBNối đỉnh A với trung điểm M, ta có đường trung tuyến AMThực hiện xác định trung điểm và nối đỉnh tương tự với những trung tuyến khácGiao điểm của 3 đường trung tuyến được gọi là điểm G. Từ đây chứng minh được G là trọng tâm ABC. 

Cách 2:

Xác định trung điểm M của cạnh BC sao cho M chia BC thành 2 đoạn bằng nhau MC = MBNối đỉnh A với trung điểm M, ta có đường trung tuyến AMTrên trung tuyến AM, chọn điểm G sao cho AG = ⅔ AMDựa trên tính chất trọng tâm tam giác, ta suy ra G chính là trọng tâm tam giác ABC. 

3.TRỌNG TÂM TRONG những HÌNH nổi trội

Trọng tâm vốn là một điểm rất nổi trội và trọng tâm trong những hình tam giác nổi trội như tam giác vuông, cân nhiều lần tam giác đều còn làm đường trung tuyến ứng với trọng tâm có đến vài vai trò khác nhau trong một hình. 

Dưới đây là một vài ví dụ về trọng tâm trong những hình học nổi trội mà rất hoàn toàn có thể chúng ta sẽ gặp trong chương trình học phổ thông của mình:

Trọng tâm trong tam giác vuông

*

Ta có tam giác ABC, vuông tại B. Từ điểm B ta vẽ đường trung tuyến BA, sao cho A chia CD thành hai đoạn AD = AC. Do BA là đường trung tuyến của góc vuông nên ta có BA = ½ CD, tức BA = AD = AC. Từ đó ta có hai tam giác ABD và tam giác ABC cân tại A. 

Trọng tâm trong tam giác cân

*

Tiếp tục lấy ví dụ tam giác ABC cân tại A. Gọi G là trọng tâm tam giác cân ABC. Do ABC cân tại A nên AG lúc này vừa đóng vai trò là đường trung tuyến, đường cao và cả đường phân giác của tam giác ABC. Ta có hệ quả từ trọng tâm này như sau: 

Góc BAG = Góc CAGTrung tuyến AG vuông góc với cạnh BC

Trọng tâm trong tam giác đều

*

Giả sử tam giác đều ABC có G là giao điểm ba đường trung tuyến. Do tính chất nổi trội của tam giác đều (3 cạnh bằng nhau) nên điểm G có tới 4 vai trò: là trọng tâm, trực tâm, tâm đường tròn ngoại và nội tiếp của tam giác ABC.

Trọng tâm trong hình tứ diện

*

Tại những bậc học tăng cao, học sinh sẽ được tiếp xúc với những loại trọng tâm khó hơn. Điển hình như với những bài tập dạng trọng tâm trong hình tứ diện. 

Giả sử ta có hình tứ diện ABCD với G là trọng tâm. Trọng tâm trong hình tứ diện này là giao điểm của 4 đường thẳng nối đỉnh và trọng tâm của những tam giác đối diện với nhau. 

4. BÀI TẬP LUYỆN TẬP

nhằm hiểu rõ hơn về trọng tâm, chúng ta hoàn toàn có thể xem thêm bài tập sau đây: Tam giác ABC có trung tuyến BM = CN. Hai trung tuyến trên cắt nhau tại G. chúng ta hãy chứng minh tam giác ABC cân tại A.

Xem thêm: Thẻ Div Trong Html Là Gì – Cách sử dụng Thẻ Div Trong Html Từ A Đến Z

Bài giải: 

Do BM và CN là trung tuyến tam giác ABC, giao nhau tại G nên BG / BM = CG/ CN = ⅔Do BM = CN => BG=CN và GN=GMTrong tam giác BNG và tam giác CGM: BG=CN, GN=GM và góc BGN bằng góc CGM (góc đối đỉnh)Như vậy, tam giác BNG và tam giác CGM đồng dạng => BN = CM => AB = AC. Như vậy ABC là tam giác cân tại A.

Như vậy, với những kiến thức cơ bản và bài tập luyện tập làm quen nói trên, thienmaonline.vn hi vọng chúng ta đọc đều có cho mình sự hiểu biết nhất định về trọng tâm. Nắm vững những kiến thức kể trên hoàn toàn có thể trợ giúp đỡ ích vô số trong việc giải những bài tập hình học từ cơ bản đến nâng cao. Rất mong chúng ta đọc sẽ vận dụng hợp lý chúng nhằm đạt được kết quả cao nhất trong những kì thi của mình!

luôn luôn mục: Hỏi Đáp

Nguồn : Tổng hợp

[bvlq_danh_muc]

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

This site uses cookies to offer you a better browsing experience. By browsing this website, you agree to our use of cookies.